Study of meson spectroscopy of a lattice SU(4) gauge BSM model.

Venkitesh Ayyar 1 Thomas Degrand 1 Daniel Hackett 1 William Jay 1 Ethan Neil 1,3 Benjamin Svetitsky 2 Yigal Shamir 2 .

¹University of Colorado, Boulder, ²Tel Aviv University, ³RIKEN-BNL Research Center.

TaCo collaboration

Tue, Aug 1, DPF 2017, Fermilab, Batavia, IL, USA.

Work supported by grants from the DOE.

Computational work done using resources provided by Fermilab and local Janus cluster.

Hierarchy problem

Unaesthetic features of SM

- Higgs potential introduced for SSB.
- Higgs is light ($\sim 100 \text{GeV}$) compared to Λ_{Planck} .
- Higgs is a scalar.

Higgs mass Hierarchy problem

- Higgs mass $\sim \Lambda_{FW}$.
- Any coupling to the Higgs introduces corrections $O(\Lambda_{IIV}^2)$ to Higgs mass, due to radiative corrections.
- At higher scales, parameters have to be fine-tuned to get observed Higgs mass.

Is Higgs a composite pNGB in a new strong sector?

Composite Higgs ²

- Introduce a new strong sector (Hypercolor).
- Induce chiral symmetry breaking to get pNGBs one of which is the Higgs.
- Symmetry breaking $G \to H$, with Higgs doublet in the G/H coset.
- Weak sector $SU(2)_L \times U(1)_Y \subset H$.
- Higgs potential generated dynamically by coupling to SM fields.

Partial compositeness ¹

• Linear couplings of top quark to a baryon in the new sector gives fermion mass.

Ferretti-Karateev in 2014 classified UV completions.

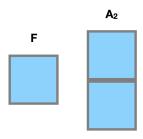
²Dugan, Georgi, Kaplan, Nucl. Phys. B254, 299 (1985)

University of Colorad Boulder

¹Kaplan, Nuclear Physics B365, (1991)

Ferretti's model(1404.7137)

- UV completion with partial compositness.
- SU(4) gauge theory with 2 representations.


Fermion content

- 5 sextet(A_2) Majorana fermions.
- 6 fundamental(F) Weyl fermions.

Symmetry breaking

- SU(5)/SO(5) in A_2 rep.
- $(SU(3)_L \times SU(3)_R) / SU(3)$ in F rep.

The Higgs doublet lives in the SU(5)/SO(5) coset.

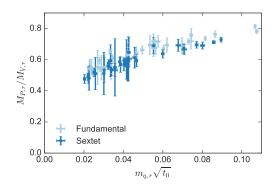
Our Lattice model

SU(4) gauge theory with modified fermion content

- 2 flavors of sextet A_2 Dirac fermions.
- 2 flavors of fundamental F Dirac fermions.

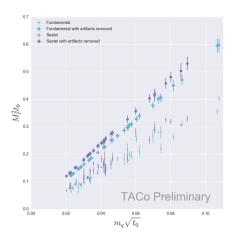
Symmetry breaking

- SU(4)/SO(4) in A_2 rep.
- $(SU(2)_L \times SU(2)_R) / SU(2)$ in F rep.
- 3 coupling constants : β , κ_4 , κ_6 .
- Expected to capture qualitative features of Ferretti's model.


Lattice details

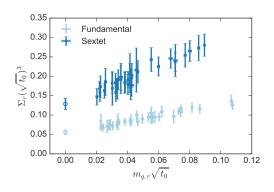
- Simulations on lattice sizes $16^3 \times 32$ and $16^3 \times 18$.
- About 40 ensembles.
- Multi-rep MILC code by Yigal Shamir
- Studied Pseudo-scalar and vector mesons.
- Extract meson masses using two-point correlation functions.
- Using Wilson flow method to set the scale.

Ensemble overview


- Lattice results obtained in terms of lattice spacing a.
- Using Wilson flow scale t₀ to remove a dependence.
- Look at M_P/M_V vs m_q .
- Quark mass m_q obtained using Axial Ward identity.
- Relatively heavy mesons.
- Similar behavior for both representations.

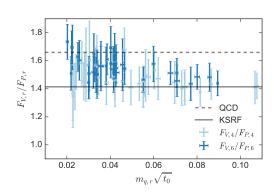
Leading order ChiPt

- Upto leading order in ChiPt, $M_{pi}^2 \sim m_q$.
- Removed lattice artifacts obtained using Wilson ChiPt.
- Linear behavior for both reps.


Comparison with NLO ChiPT

- Useful to compare lattice results to NLO ChiPT.
- Multirep NLO ChiPT worked out by DeGrand, Goltermann, Neil, Shamir (1605.07738).
- M_{P4} , F_{P4} , M_{P6} , F_{P6} depend on a set of low energy constants(LECs).
- Simultaneous fit to all four quantities.
- Find a good fit $(\chi^2/DOF \sim 0.5)$

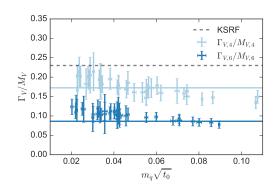
Condensates


- Two condensates, one for each representation.
- Compute it indirectly using $\hat{\Sigma_r} = \frac{M_{P,r}^2 F_{P,r}^2}{2m_0}$
- Chiral limit values computed using ChiPt.
- Condensate ratio Σ_6/Σ_4
 - ▶ Lattice calc \rightarrow 2.2

Decay constants

- KSRF 3,4 related F_V and F_P using current algebra and vector meson dominance. $F_V = \sqrt{2}F_P$.
- Can compare F_V and F_P in a fixed representation.
- QCD experiment: $F_V/F_P =$ 216 MeV / 130 MeV = 1.66.
- For both reps, our results similar to QCD.

V. Ayyar (CU, Boulder)



³Kawarabayashi and Suzuki, PRL 16, 255 (1966).

Decay widths

- KSRF also predicted coupling strength $g_{VPP} = \frac{M_V}{E_D}$.
- Allows tree-level estimation of vector decay width: $\Gamma_V = g_{VPP}^2 M_V / 48\pi$.
- KSRF prediction $\frac{\Gamma_V}{M_V} \sim \frac{M_V^2}{48\pi F^2}$.
- $\bullet \ \frac{\Gamma_V}{M_V}_{QCD} = 0.19.$
- Our states narrower than QCD.
- $\bullet \ \frac{\Gamma_{V6}}{M_{V6}} = 0.13$, $\frac{\Gamma_{V4}}{M_{V4}} = 0.18.$

Conclusions and Outlook

Conclusions

- Zero temperature study of lattice SU(4) gauge theory BSM model with fermions in multiple reps.
- Meson spectroscopy data consistent with ChiPT.
- KSRF relations hold similar to QCD.
- Theory appears QCD-like.

Future direction

- Baryon spectroscopy.
- Coupling between the two irreps.
 - LECs unconstrained.
 - Greater precision might help constrain these.
- Existence of exotic pNGB ζ meson.
 - ▶ Theory has non-anomalous $U(1)_A$
 - ightharpoonup SSB \Longrightarrow scalar, singlet ζ meson.

THANK YOU

Back-up slides

Wilson flow to set the scale

- Wilson flow: a smearing technique to smooth-out configurations.
- Also, a method to set the scale⁵,
- $t_0\langle E(t_0)\rangle=M(N)$, where $E(t)=\frac{1}{4}G_{t,\mu\nu}G_{t,\mu\nu}$.
- For QCD (N=3), M = 0.3, corresponding to $\sqrt(t_0) = 0.14 fm$.
- For SU(4), $t_0\langle E(t_0)\rangle = 0.3 \times \frac{4}{3} = 0.4$,

